SEVENTH EDITION

Introduction to BEHAVIORAL RESEARCH METHODS

Mark R. Leary

Introduction to Behavioral Research Methods

Seventh Edition

Mark R. Leary Duke University

330 Hudson Street, NY, NY 10013

VP, Product Development: Dickson Musslewhite	Director, Project Management Services: Etain O'Dea
Director, Content Strategy and Development:	Project Team Lead: Vamanan Namboodiri
Sharon Geary	Project Manager: Purnima Narayanan
Editor in Chief: Ashley Dodge	Director of Field Marketing: Jonathan Cottrell
Managing Editor: Sutapa Mukherjee	Senior Marketing Coordinator: Susan Osterlitz
Sponsoring Editor: Priya Christopher	Operations Manager: Mary Fischer
Content Manager: Carly Czech	Operations Specialist: Mary Ann Gloriande
Editorial Assistant: Anna Austin	Associate Director of Design: Blair Brown
Editorial Project Manager: Aphrodite Knoop,	Interior Design: Kathryn Foot
iEnergizer Aptara®, Ltd.	Cover Design: Lumina Datamatics, Inc.
Development Editor: Leslie Lahr,	Cover Art: Fotolia / agsandrew
iEnergizer Aptara [®] , Ltd.	Digital Studio Project Manager: Elissa Senra-Sargent
Instructional Designer: Namita Hiwale,	Digital Studio Team Lead: Peggy Bliss
iEnergizer Aptara®, Ltd.	Full-Service Project Management and Composition:
Asset Development Team: LearningMate	Jogender Taneja, iEnergizer Aptara [®] , Ltd.
Solutions, Ltd.	Printer/Binder: RRD-Owensville
VP, Director of Marketing: Maggie Moylan	Cover Printer: Phoenix Color

Acknowledgements of third party content appear on pages 347–348, which constitute an extension of this copyright page.

Copyright © 2017, 2012, 2008 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

PEARSON, ALWAYS LEARNING, and REVEL are exclusive trademarks owned by Pearson Education, Inc. or its affiliates, in the U.S., and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Leary, Mark R.
Title: Introduction to behavioral research methods/Mark R. Leary, Duke University.
Description: Seventh Edition. | Hoboken : Pearson, 2016. | Revised edition of the author's | Includes bibliographical references and index.
Identifiers: LCCN 2016022200 | ISBN 9780134414409 | ISBN 0134414403
Subjects: LCSH: Psychology—Research—Methodology.
Classification: LCC BF76.5 .L39 2016 | DDC 150.72/1—dc23 LC record available at https://lccn.loc.gov/2016022200

10 9 8 7 6 5 4 3 2 1

Brief Contents

1	Research in the Behavioral Sciences	1
2	Behavioral Variability and Research	26
3	The Measurement of Behavior	40
4	Approaches to Psychological Measurement	58
5	Selecting Research Participants	81
6	Descriptive Research	97
7	Correlational Research	114
8	Advanced Correlational Strategies	131

9	Basic Issues in Experimental Research	146
10	Experimental Design	170
11	Analyzing Experimental Data	186
12	Statistical Analyses	200
13	Quasi-Experimental Designs	222
14	Single-Case Research	239
15	Ethical Issues in Behavioral Research	253
16	Scientific Writing	274

This page intentionally left blank

Contents

Prefa	ice		xi
Aboı	at the A	Author	XV
1	Rese	earch in the Behavioral Sciences	1
1.1:	The Be	ginnings of Behavioral Research	2
Cont	ributor	s to Behavioral Research: Wilhelm Wundt	
and t	he Fou	nding of Scientific Psychology	2
1.2:	Goals o	of Behavioral Research	3
	1.2.1:	Describing Behavior	4
	1.2.2:	Predicting Behavior	4
	1.2.3:	Explaining Behavior	4
1.3:	Behavi	oral Science and Common Sense	4
1.4:	The Va	lue of Research to the Student	5
1.5:	The Sc	ientific Approach	6
	1.5.1:	Systematic Empiricism	6
	1.5.2:	Public Verification	6
	1.5.3:	Solvable Problems	7
In De	pth: So	cience and Pseudoscience	7
1.6:	Detecti	ng and Explaining Phenomena	7
	1.6.1:	Theories	8
	1.6.2:	Models	9
1.7:	Resear	ch Hypotheses	9
	1.7.1:	Deduction and Induction	9
	1.7.2:	Testing Theories	10
1.8:	Concep	ptual and Operational Definitions	11
Deve	loping	Your Research Skills: Getting Ideas	
for R	esearc	h	12
1.9:	Scienti	fic Progress	13
	1.9.1:	Proof and Disproof in Science	13
	1.9.2:	Replication	14
In De	pth: So	olutions to the Replication Problem	15
	1.9.3:	The Scientific Filter	16
Deve	loping	Your Research Skills: Resisting	
Perso	onal Bi	ases	18
1.10:	Strateg	ies of Behavioral Research	19
	1.10.1:	Descriptive Research	19
	1.10.2:	Correlational Research	19
	1.10.3:	Experimental Research	19
	1.10.4:	Quasi-Experimental Research	20
	1.10.5:	Review of Behavioral Research	20
1 11.	Domai	ne of Behavioral Science	∠∪ 21
1 1 2.	Bohavi	aral Research on Nonhuman	<u>∠1</u>
1.12:	Anima	ls	21
Beha	vioral I		
Selec	t the E	Best Collaborators	22

1.13:	Decisio	ons, Decisions, Decisions	23
S	ummary:	Research in the Behavioral Sciences	24
K	ey Terms		25
2	Roh	avioral Variability	
~	and	Research	26
	una		20
2.1:	Variab	ility and the Research Process	27
	2.1.1:	The Goals of Behavioral Science	27
	2.1.2:	Research Questions	27
	2.1.3:	Research Design	28
	2.1.4:	Measurement of Behavior	28
	2.1.5:	Statistical Analyses	28
2.2:	Varian	ce	29
	2.2.1:	A Conceptual Explanation of Variance	29
	2.2.2:	A Statistical Explanation of Variance	30
Dev	eloping	Your Research Skills: Statistical	
Nota	ation		31
2.3:	System	natic and Error Variance	32
	2.3.1:	Systematic Variance	32
Exa	nples o	f Systematic Variance: Temperature	
and	Aggres	sion	32
	2.3.2:	Error Variance	33
	2.3.3:	Distinguishing Systematic from Error	00
	10101	Variance	34
2.4:	Assess	ing the Strength of Relationships	34
	2.4.1:	Effect Size	35
	2.4.2:	Small Effect Sizes Can Be Important	35
In D	enth: Ff	fect Sizes in Psychology Medicine	
and	Baseba	ll	36
25.	System	natic Variance Across Studies	36
2.0.	2 5 1·	Meta-Analysis	37
Dove	bologi	al Effects of Dunishment on Children	27
FSyd	noiogia		37
Beh	avioral	Research Case Study: Meta-Analyses	
of G	ender D	Differences in Math Ability	37
2.6:	The Qu	uest for Systematic Variance	38
S	ummary:	Behavioral Variability and Research	38
K	ey Terms		39
3	The	Measurement of Behavior	40
3.1:	Types	of Measures	41
Beh	avioral	Research Case Study: Converging	
Ope	rations	in Measurement	41
3 7.	Scales	of Measurement	17
0.2.	2 9 1.	Importance of Scalos of Measurement	-12 /10
	0.2.1:		40
IN D	eptn: So	cales, Scales, and Scales	43

vi Contents

3.3:	Assess	sing the Reliability of a Measure	43
	3.3.1:	Measurement Error	44
	3.3.2:	Reliability as Systematic Variance	46
	3.3.3:	Types of Reliability	46
Beha and	avioral the Co	Research Case Study: Interitem Reliability nstruction of Multi-Item Measures	49
In D	epth: R	eflective Versus Formative Measures	49
	3.3.4:	Increasing the Reliability of Measures	50
3.4:	Assess	sing the Validity of a Measure	51
	3.4.1:	Types of Validity	51
Beha Valio	avioral lity	Research Case Study: Construct	52
Beha Valio	avioral lity	Research Case Study: Criterion-Related	54
3.5:	Fairne	ss and Bias in Measurement	54
In D	epth: T	he Reliability and Validity of College	
Adm	ission	Exams	55
S	ummary:	The Measurement of Behavior	56
K	ey Terms	3	57
4	Apr	proaches to Psychological	
-	Mea	asurement	58
4.1:	Obser	vational Approaches	59
	4.1.1: 4.1.2:	Naturalistic Versus Contrived Settings Disguised Versus Nondisguised	59
		Observation	60
Beha Obse	avioral ervatio	Research Case Study: Disguised n in Laboratory Settings	61
	4.1.3:	Behavioral Recording	61
	4.1.4:	Increasing the Reliability of Observational Methods	63
Beha from	avioral ı Obser	Research Case Study: Predicting Divorce ving Husbands and Wives	64
4.2:	Physic	ological and Neuroscience Approaches	64
	4.2.1:	Measures of Neural Electrical Activity	65
	4.2.2:	Neuroimaging	65
Beha Peop	avioral ple's Tr	Research Case Study: Judging Other ustworthiness	65
	4.2.3:	Measures of Autonomic Nervous System	
		Activity	65
	4.2.4:	Blood and Saliva Assays	66
	4.2.5:	Precise Measurement of Overt Reactions	66
4.3:	Questi	ionnaires and Interviews	66
	4.3.1:	Questionnaires	66
	4.3.2:	Sources for Existing Measures	67
	4.3.3:	Experience Sampling Methods	67
Date	4.3.4:	Interviews	68
of Runaway Adolescents			69
	4.3.5:	Advantages of Questionnaires Versus Interviews	69

4.4:	Devel	oping Items	69
	4.4.1:	Single-Item and Multi-Item Measures	70
	4.4.2:	Writing Items	70
	4.4.3:	Response Formats	71
In D	epth: C	hoosing Response Options	73
In De	epth: A	sking for More Than Participants	
Can	Report		74
4.5:	Biases	in Self-Report Measurement	74
	4.5.1:	The Social Desirability Response Bias	74
	4.5.2:	Acquiescence and Nay-Saying	
		Response Styles	74
Dev	eloping	Your Research Skills: Anti-Arab Attitudes	
in th	e Wake	e of 9/11	75
4.6:	Archiv	val Data	76
Beh	avioral	Research Case Study: Predicting	
Grea	atness		77
4.7:	Conte	nt Analysis	77
	4.7.1:	Steps in Content Analysis	77
Beh	avioral	Research Case Study: What Makes	
Peo	ple Bor	ing?	78
S	ummary	: Approaches to Psychological Measurement	79
K	ey Terms	5	80
5	Solo	octing Research Participants	Q 1
-	Jele	cering Research randopants	01
5.1:	A Con	nmon Misconception About Sampling	81
	5.1.1:	Probability Versus Nonprobabilty	
		Samples	82
5.2:	Proba	bility Samples	82

	5.2.1:	The Error of Estimation	83
	5.2.2:	Simple Random Sampling	83
In D	epth: R	andom Telephone Surveys	84
	5.2.3:	Systematic Sampling	85
	5.2.4:	Stratified Random Sampling	86
	5.2.5:	Cluster Sampling	86
In D	epth: T	he Debate Over Sampling for the U.S.	
Cen	sus		87
	5.2.6:	A Review of Types of Probability	
		Sampling	88
	5.2.7:	The Problem of Nonresponse	89
	5.2.8:	Factors Contributing to Nonresponse	89
	5.2.9:	Misgeneralization	90
5.3:	Nonpi	robability Samples	90
	5.3.1:	Convenience Sampling	91
In D	epth: C	ollege Students as Research Participants	91
	5.3.2:	Quota Sampling	92
	5.3.3:	Purposive Sampling	92
Beha	avioral	Research Case Study: Sampling and	
Sex	Survey	S	92
5.4:	How M	Many Participants?	93
	5.4.1:	Sample Size and Error of Estimation	93

5.4.2: Power

In D	epth: Most Behavioral Studies Are Underpowered	94
S	ummary: Selecting Research Participants	95
K	ev Terms	96
6	Descriptive Research	97
6.1:	Types of Descriptive Research	97
	6.1.1: Survey Research	97
Beha Surv	avioral Research Case Study: Cross-Sectional rey Design	98
In D	epth: Conducting Surveys on the Internet	100
	6.1.2: Demographic Research	100
Beha	avioral Research Case Study: Demographic	
Rese	earch	100
	6.1.3: Epidemiological Research	101
Beha Thar	avioral Research Case Study: Why Do More Men n Women Die Prematurely?	101
6.2:	Describing and Presenting Data	102
6.3:	Frequency Distributions	103
	6.3.1: Simple Frequency Distributions	103
	6.3.2: Grouped Frequency Distributions	103
	6.3.3: Frequency Histograms and Polygons	103
6.4:	Measures of Central Tendency	105
	6.4.1: Presenting Means in Tables and Graphs	105
	6.4.2: Confidence Intervals	106
Deve with	eloping Your Research Skills: How to Lie Statistics	107
6.5:	Measures of Variability	108
	6.5.1: Normal Distributions	109
	6.5.2: Skewed Distributions	110
6.6:	The <i>z</i> -Score	111
Deve	eloping Your Research Skills: A Descriptive	
Stud	ly of Pathological Video-Game Use	111
S	ummary: Descriptive Research	112
K	ey Terms	113
-		111
/	Correlational Research	114
7.1:	The Relationship Between Two	
	or More Variables	114
	7.1.1: The Correlation Coefficient	115
7.2:	A Graphical Representation of Correlations	116
	7.2.1: Curvilinear Relationships	117
= -	7.2.2: Interpreting Correlation Coefficients	118
7.3:	The Coefficient of Determination	118
T 4	7.3.1: Correlation and Systematic Variance	119
7.4:	Calculating the Pearson Correlation Coefficient	119
Carri	7.4.1: The Formula for Calculating <i>r</i>	120
of C	orrelation	120
7 5.	Ctatistical Cignificance of #	101
7.5:	7.5.1. Testing the Statistical Significance	121
	of Correlation Coefficients	122

7.6:	Factors	s That Distort Correlation Coefficients	123
	7.6.1:	Restricted Range	123
	7.6.2:	Outliers	125
	7.6.3:	Reliability of Measures	125
7.7:	Correla	ation and Causality	126
Beha	vioral F	Research Case Study: Correlates of	
Satis	fying R	elationships	127
7.8:	Testing	Causal Possibilities	127
	7.8.1:	Partial Correlation	128
Beha	avioral F	Research Case Study: Partial Correlation	128
7.9:	Other I	Indices of Correlation	129
Su	immary:	Correlational Research	130
Ke	ey Terms		130
8	Adv	anced Correlational Strategies	131
8.1:	Linear	Regression	131
	8.1.1:	Linear Relationships	132
8.2:	Multip	le Regression	133
	8.2.1:	Standard Multiple Regression	133
Beha	avioral F	Research Case Study: Standard Multiple	
Regr	ession	Analysis	133
	8.2.2:	Stepwise Multiple Regression	134
Beha	vioral F	Research Case Study: Predictors	
of Bl	ushing		135
	8.2.3:	Hierarchical Multiple Regression	135
Beha	vioral F	Research Case Study: Personal and	
Inter	person	al Antecedents of Peer Victimization	136
	8.2.4:	Multiple Correlation	136
8.3:	Assess	ing Directionality	137
	8.3.1:	Cross-Lagged Panel Design	137
	8.3.2:	Structural Equations Modeling	138
Beha	avioral F	Research Case Study: Partner	
Attra	ctivene	ess and Intention to Practice Safe Sex	139
8.4:	Nested	Data and Multilevel Modeling	140
Beha	avioral F	Research Case Study: Birth Order	
and	Intellige	ence	141
8.5:	Factor	Analysis	142
	8.5.1:	An Intuitive Approach	142
	8.5.2:	Basics of Factor Analysis	142
	8.5.3:	Uses of Factor Analysis	143
Beha	avioral F	Research Case Study: The Five-Factor	
Mod	el of Pe	rsonality	143
Su	immary:	Advanced Correlational Strategies	144
Ke	ey Terms		145
9	Basi	c Issues in Experimental	
	Rese	earch	146
9.1:	The Us	e of Experimental Designs	147
9.2	Manip	ulating the Independent Variable	147
	9.2.1:	Independent Variables	148
	9.2.2:	Types of Independent Variables	148

Beha	avioral	Research Case Study: Emotional	
Cont	agion		149
	9.2.3:	Dependent Variables	151
Deve	loping	Your Research Skills: Identifying	
Inde	pender	nt and Dependent Variables	151
9.3:	Assigr	ning Participants to Conditions	152
	9.3.1:	Simple Random Assignment	152
	9.3.2:	Matched Random Assignment	152
	9.3.3:	Repeated Measures Designs	153
Beha Desi	avioral gn	Research Case Study: A Within-Subjects	154
Beha in Co	avioral ognitive	Research Case Study: Carryover Effects Psychology	155
9.4:	Experi	mental Control	155
	9.4.1:	Systematic Variance Revisited	156
	9.4.2:	Error (Within-Groups) Variance	156
	9.4.3:	Three Components of Total Variance	157
9.5:	Elimin	ating Confounds	158
	9.5.1:	Internal Validity	158
Deve	loping	Your Research Skills: Can You Find	
the C	Confou	nd?	158
	9.5.2:	Threats to Internal Validity	159
9.6:	Experi	menter Expectancies, Demand	
	Charao	cteristics, and Placebo Effects	162
	9.6.1:	Experimenter Expectancy Effects	162
	9.6.2:	Demand Characteristics	162
Data	9.6.3:	Placebo Effects	163
of Pl	acebo	Research Case Study: The Kind Matters	163
0.7	Error	Variance	164
9.7.	071·	Sources of Error Variance	164
	972	Concluding Remarks on Error	101
	<i></i>	Variance	165
In De	epth: Th	ne Shortcomings of Experimentation	166
9.8:	Extern	al Validity	166
In De	epth: B	ut It's Not Real Life	167
99.	Web-B	ased Experimental Research	167
Si	immary:	Basic Issues in Experimental Research	168
Ke	ev Terms		169
	by ronno		100
10	Exp	erimental Design	170
10.1:	One-W	Vav Designs	171
	10.1.1:	Assigning Participants to Conditions	171
Deve	loping	Your Research Skills: Design Your	
Own	Experi	ments	171
	10.1.2:	Posttest-Only Designs	172
	10.1.3:	Pretest–Posttest Designs	172
	10.1.4:	Posttest-Only Versus Pretest-Posttest	
		Designs	172
10.2:	Factor	ial Designs	174
	10.2.1:	Two-Way Factorial Designs	175

10.2.2: Higher-Order Factorial Designs	175
10.2.3: Assigning Participants to Conditions	177
10.3: Main Effects and Interactions	178
10.3.1: Main Effects	178
10.3.2: Interactions	179
Developing Your Research Skills: Graphing Interactions	180
10.3.3: Three-Way Factorial Designs	180
10.4: Combining Independent and Participant Variables	181
10.4.1: Uses of Mixed/Expericorr Designs	181
10.4.2: Classifying Participants into Groups	182
Behavioral Research Case Study: Narcissism	
and the Appeal of Scarce Products	183
10.4.3: Cautions in Interpreting Results of Mixed/Expericorr Designs	184
Summary: Experimental Design	184
Key Terms	185
11 Analyzing Experimental Data	186
11.1: An Intuitive Approach to Analysis	186
11.1.1: Error Variance Can Cause Differences Between Means	187
11.2: Significance Testing	188
11.2.1: The Null Hypothesis	188
11.2.2: Type I and Type II Errors	189
11.2.3: Power	190
11.2.4: Comparing Type I and Type II Errors	191
11.2.5: Problems with Null Hypothesis Testing	191
In Depth: Reporting <i>p</i> -Values	192
11.3: Effect Size	192
11.3.1: Cohen's d	193
11.3.2: The Odds Ratio	193
11.3.3: Determining the Effect Size Indicator	193
Behavioral Research Case Study: Taking Class Notes	194
11.4: Confidence Intervals	194
11.4.1: Confidence Intervals for Means	195
11.4.2: Confidence Intervals for Differences	106
In Dopthy Confidence Intervals and Standard Errors	190
Reputiered Desservels Case Study: Secretaria	197
the Exclusion of Ambiguous Group Members	197
Summary: Analyzing Experimental Data	198
Key Terms	199
12 Statistical Analyses	200
12.1: Analysis of Two-Group Experiments Using	
the <i>t</i> -Test	201
Contributors to Behavioral Research: W. S. Gosset	
and Statistics in the Brewery	201
12.1.1: Conducting a <i>t</i> -Test	201
Developing Your Research Skills: Computational	

Example of a t-Test

	1212.	Designing and Analyzing Two-Group		
	14,1,4,	Experiments	204	
	12.1.3:	Back to the Droodles Experiment	205	
	12.1.4:	Directional and Nondirectional		
		Hypotheses	205	
12.2:	Condu	cting Multiple Tests Inflates Type I Error	205	
10.0	12.2.1:	The Bonferroni Adjustment	206	
12.3:	The Ra	tionale behind ANOVA	207	
12.4:	How A	NOVA Works	207	
	12.4.1:	Iotal Sum of Squares	207	
	12.4.2:	Sum of Squares Botween Croups	207	
	12.4.5.	The F-Test	200	
	12.4.5:	Extension of ANOVA to Factorial	207	
		Designs	209	
Cont	ributor	s to Behavioral Research: Fisher,		
Expe	riment	al Design, and the Analysis of Variance	211	
12.5:	Follow	-Up Tests to ANOVA	211	
	12.5.1:	Main Effects for Independent Variables		
		with More than Two Levels	211	
	12.5.2:	Interactions	212	
Beha	vioral I	Research Case Study: Liking People	010	
who			213	
D	12.5.3:	Interpreting Main Effects and Interactions	213	
Deve in Re	loping	Your Research Skills: Cultural Difference s to Social Support	S 215	
10 (215	
12.6:	Analys	ses of Within-Subjects Designs	216	
12.7:	12 7 1.	Concentually Related Dependent	216	
	12.7.1.	Variables	217	
	12.7.2:	Inflation of Type I Error	217	
	12.7.3:	How MANOVA Works	217	
Beha	vioral I	Research Case Study: An Example		
of MANOVA				
12.8:	Experi	mental and Nonexperimental Uses		
	of <i>t</i> -les	sts, ANOVA, and MANOVA	218	
In De	epth: Co	omputerized Analyses	219	
Su				
	immary:	Statistical Analyses	220	
Ke	immary: ey Terms	Statistical Analyses	220 220	
Ke	immary: ey Terms	Statistical Analyses	220 220	
Ke 13	immary: ey Terms Qua	Statistical Analyses si-Experimental Designs	220 220 222	
Ke 13 In De	immary: ay Terms Qua apth: Th	Statistical Analyses si-Experimental Designs ne Internal Validity Continuum	220 220 222 222 223	
Ke 13 In De 13.1:	y Terms Qua Poth: Tr Pretest	Statistical Analyses si-Experimental Designs ne Internal Validity Continuum –Posttest Designs	220 220 222 223 223	
Ke 13 In De 13.1:	Qua pth: Tr Pretest 13.1.1:	Statistical Analyses si-Experimental Designs ne Internal Validity Continuum -Posttest Designs Why Not to Use the One-Group	220220222223223	
Ke 13 In De 13.1:	y Terms Qua epth: Tr Pretest 13.1.1:	Statistical Analyses si-Experimental Designs ne Internal Validity Continuum –Posttest Designs Why Not to Use the One-Group Pretest–Posttest Design	220 220 222 223 223 223	
Ke 13 In De 13.1:	Qua ppth: Tr Pretest 13.1.1: 13.1.2:	Statistical Analyses si-Experimental Designs ne Internal Validity Continuum -Posttest Designs Why Not to Use the One-Group Pretest-Posttest Design Nonequivalent Control Group Design	220 220 222 223 223 223 224	
Ke 13 In De 13.1: Beha Resp	Qua poth: Tr Pretest 13.1.1: 13.1.2: vioral I ponsibil	Statistical Analyses si-Experimental Designs he Internal Validity Continuum –Posttest Designs Why Not to Use the One-Group Pretest–Posttest Design Nonequivalent Control Group Design Research Case Study: Perceived ity and Well-Being Among the Elderly	220 220 222 223 223 223 224 225	
Ke 13 In De 13.1: Beha Resp Beha	y Terms Qua epth: Tr Pretest 13.1.1: 13.1.2: vioral I ponsibil	Statistical Analyses si-Experimental Designs he Internal Validity Continuum –Posttest Designs Why Not to Use the One-Group Pretest–Posttest Design Nonequivalent Control Group Design Research Case Study: Perceived ity and Well-Being Among the Elderly Research Case Study: Motivational	220 220 222 223 223 223 224 225	
Ke 13 In De 13.1: Beha Resp Beha Clima	Qua poth: Tr Pretest 13.1.1: 13.1.2: ivioral I ponsibil ivioral I ate in Y	Statistical Analyses esi-Experimental Designs ne Internal Validity Continuum -Posttest Designs Why Not to Use the One-Group Pretest-Posttest Design Nonequivalent Control Group Design Research Case Study: Perceived ity and Well-Being Among the Elderly Research Case Study: Motivational Youth Sports	220 222 223 223 223 224 225 226	
Ke 13 In De 13.1: Beha Resp Beha Clima	Qua poth: Tr Pretest 13.1.1: 13.1.2: vioral I ponsibil vioral I ate in Y 13.1.3:	Statistical Analyses si-Experimental Designs he Internal Validity Continuum -Posttest Designs Why Not to Use the One-Group Pretest–Posttest Design Nonequivalent Control Group Design Research Case Study: Perceived ity and Well-Being Among the Elderly Research Case Study: Motivational Jouth Sports Ensuring Similarity in Nonequivalent	220 220 222 223 223 223 224 225 225 226	

13.2: Time Series Designs	227	
13.2.1: Simple Interrupted Time Series Design	228	
Behavioral Research Case Study: The Effects		
of No-Fault Divorce	228	
13.2.2: Interrupted Time Series with a Reversal	229	
13.2.3: Control Group Interrupted Time		
Series Design	230	
Behavioral Research Case Study: Traffic Fatalities		
After 9/11	230	
13.3: Comparative Time Series Design	231	
Behavioral Research Case Study: Comparative		
Time Series Design	231	
13.4: Longitudinal Designs	232	
Rehavioral Research Case Study: The Stability	202	
of Personality in Infancy and Childhood	233	
12 E. Cross Seguential Cohert Designs	222	
13.5: Cross-Sequential Cohort Designs	200	
13.6: Program Evaluation	234	
Developing Your Research Skills: Broken	005	
Experiments	235	
Contributors to Behavioral Research: Donald		
Campbell and Quasi-Experimentation	235	
13.7: Evaluating Quasi-Experimental Designs	235	
13.7.1: Threats to Internal Validity	236	
13.7.2: Increasing Confidence in		
Quasi-Experimental Results	237	
Summary: Quasi-Experimental Designs	238	
Key Terms	238	
Key Terms 14 Single-Case Research	238 239	
14 Single-Case Research	238 239	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers	238 239 240	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single Case Experimental Designs	238 239 240	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.11: Single-Case Experimental Designs 14.11: Criticians of Crown Designs	238239240240	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses	 238 239 240 240 241 	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About	 238 239 240 240 241 	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves	 238 239 240 240 241 242 	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves	 238 239 240 240 241 242 242 242 242 242 	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 	238 239 240 240 241 242 243 243	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2 M kitch JD stirut	238 239 240 240 241 242 243 243	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.2: Multiple-I Designs 	238 239 240 240 241 241 242 243 243 243	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 	238 239 240 240 241 243 243 243 244 245	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 	238 239 240 240 241 242 243 243 243 244 245 245	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 	238 239 240 241 242 243 243 243 243 245 245 245 247	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Study: Treatment 	238 239 240 240 241 242 243 243 243 244 245 245 245 247	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs Behavioral Research Case Study: Treatment of Stuttering 	238 239 240 240 241 243 243 243 244 245 245 245 247 247	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs Behavioral Research Case Study: Treatment of Stuttering Critique of Single-Participant Designs 	238 239 240 241 242 243 243 243 243 245 245 245 247 247 248	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.6: Critique of Single-Participant Designs 14.3: Case Study Research 	238 239 240 241 242 243 243 243 243 245 245 245 247 248 248	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.6: Critique of Single-Participant Designs 14.3: Case Study Research 14.3.1: Uses of the Case Study Method 	238 239 240 240 241 243 243 243 243 245 245 245 247 247 248 248 248 249	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs Behavioral Research Case Study: Treatment of Stuttering 14.2.6: Critique of Single-Participant Designs 14.3.1: Uses of the Case Study Method 14.3.2: Limitations of the Case Study Approach 	238 239 240 241 242 243 243 243 243 245 245 245 245 247 248 248 249 250	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.6: Critique of Single-Participant Designs 14.3.1: Uses of the Case Study Method 14.3.1: Uses of the Case Study Method 14.3.2: Limitations of the Case Study Approach 	238 239 240 241 242 243 243 243 243 245 245 245 247 248 248 248 248 249 250	
 Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple Baseline Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.6: Critique of Single-Participant Designs 14.3.1: Uses of the Case Study Method 14.3.1: Uses of the Case Study Method 14.3.2: Limitations of the Case Study Approach 	238 239 240 241 242 243 243 243 243 243 245 245 245 247 248 248 248 249 250 250	
Key Terms 14 Single-Case Research Contributors to Behavioral Research: Single-Case Researchers 14.1: Single-Case Experimental Designs 14.1: Criticisms of Group Designs and Analyses In Depth: How Group Designs Misled Us About Learning Curves 14.2: Basic Single-Case Experimental Designs 14.2.1: ABA Designs 14.2.2: Multiple-I Designs 14.2.3: Multiple-I Designs 14.2.4: Data from Single-Participant Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.5: Uses of Single-Case Experimental Designs 14.2.6: Critique of Single-Participant Designs 14.3.1: Uses of the Case Study: Treatment of Stuttering 14.3.1: Uses of the Case Study Method 14.3.2: Limitations of the Case Study Approach Behavioral Research Case Study: A Case Study of a Case Study Summary: Single-Case Research	238 239 240 241 242 243 243 243 243 245 245 245 247 248 249 250 250 251	

15 Ethical Issues in Behavioral Research	253	
15.1: Approaches to Ethical Decisions	254	
In Depth: What Is Your Ethical Ideology?	255	
15.2: Basic Ethical Guidelines	255	
15.2.1: Potential Benefits	255	
15.2.2: Potential Costs	256	
15.2.3: The Institutional Review Board	256	
15.3: The Principle of Informed Consent	256	
15.3.1: Obtaining Informed Consent	257	
15.3.2: Problems with Obtaining		
Informed Consent	257	
of an Informed Consent Form	258	
	250	
15.4: Invasion of Privacy	258	
Developing Your Research Skills: What Constitutes	259	
	250	
15.5: Coercion to Participate	259	
15.6: Physical and Mental Stress	259	
In Depth: Do Studies of Sensitive Topics Exceed Minimal Bisk?		
157. Decention	260	
15.7.1: Objections to Deception	261	
15.8: Confidentiality	261	
Behavioral Research Case Study: The Milgram	-01	
Experiments	262	
15.9: Debriefing	263	
15.10: Common Courtesy	264	
15.11: Vulnerable Populations	264	
In Depth: Internet Research Ethics	265	
Developing Your Research Skills: Ethical Decisions	265	
15.12: Ethical Principles in Research with		
Nonhuman Animals	266	
In Depth: Behavioral Research and Animal Rights	267	
15.13: Scientific Misconduct	267	
15.13.1: Fabrication, Falsification,		
and Plagiarism	267	
15.13.2: Questionable Research Practices	268	
15.13.3: Unethical Behavior	268	
15.14: Ethical Issues in Analyzing Data and Reporting Results	260	
15.14.1: Analyzing Data	269	
15.14.2. Reporting Results	270	
15.14.3: An Ethical Guidepost	270	
15.15: Suppression of Scientific Inquiry		
and Research Findings	270	
In Depth: Should Scientists Consider the Ethical		
Implications of Controversial Findings?	271	
15.16: A Final Note on Ethical Abuses	272	
Summary: Ethical Issues in Behavioral Research	272	
Key Terms	273	

Scientific Writing

16.1: How Scientific Findings Are Disseminated	274		
16.1.1: Journal Publication	275		
16.1.2: Presentations at Professional Meetings	276		
16.1.3: Personal Contact	276		
In Depth: Peer Review, the Media, and the Internet			
16.2: Elements of Good Scientific Writing	277		
16.2.1: Organization	277		
16.2.2: Clarity	277		
16.2.3: Conciseness	278		
Developing Your Research Skills: What's Wrong with These Sentences?			
16.2.4: Proofreading and Rewriting	280		
16.3: Avoiding Biased Language	280		
16.3.1: Gender-Neutral Language	280		
In Depth: Does Gender-Inclusive Language Really			
Matter?	281		
16.3.2: Other Language Pitfalls	282		
16.4: Parts of a Manuscript	282		
16.4.1: Title Page	282		
16.4.2: Abstract	283		
16.4.3: Introduction	283		
16.4.4: Method	284		
16.4.5: Results	284		
16.4.6: Discussion	285		
16.5: Citing and Referencing Previous Research	285		
16.5.1: Citations in the lext	285		
Behavior and Research, Not About Authors	286		
16.5.2: The Reference List	286		
In Depth: Electronic Sources and Locator Information	288		
16.6: Other Aspects of APA Style	288		
16.6.1: Headings, Spacing, Pagination, and Numbers	289		
In Depth: Who Deserves the Credit?	290		
16.7: Writing a Research Proposal			
16.8: Using <i>PsycINFO</i>	291		
16.9: Sample Manuscript	292		
Summary: Scientific Writing	316		
Key Terms	316		
Statistical Tables	317		
Computational Formulas for ANOVA	322		
Choosing the Appropriate Statistical Analysis	327		
Glossary	329		
References	339		
Credits	347		
Index			

Preface

Regardless of how good a particular class is, the students' enthusiasm for the course material is rarely as great as the professor's. No matter how interesting the material, how motivated the students, or how skillful the instructor, those who take a course are seldom as enthralled with the content as those who teach it. We've all taken courses in which an animated, nearly zealous professor faced a classroom of only mildly interested students.

In departments founded on the principles of behavioral science-psychology, neuroscience, communication, human development, education, marketing, social work, and the like—this discrepancy in student and faculty interest is perhaps most pronounced in courses that deal with research design and analysis. On the one hand, faculty members who teach courses in research methods are usually quite enthused about research. Many have contributed to the research literature in their own areas of expertise, and some are highly regarded researchers within their fields. On the other hand, despite these instructors' best efforts to bring the course alive, many students dread taking research methods courses. They expect that these courses will be dry and difficult and wonder why such courses are required as part of their curriculum. Thus, the enthusiastic, involved instructor is often confronted by a class of disinterested students, some of whom may begrudge the fact that they must study research methods at all.

In many ways, these attitudes are understandable. After all, students who choose to study psychology, education, human development, and other areas that rely on behavioral research rarely do so because they are enamored with research. In fact, many of them are initially surprised by the degree to which their courses are built around the results of scientific studies. (I certainly was.) Rather, such students either plan to enter a profession in which knowledge of behavior is relevant (such as professional psychology, social work, teaching, counseling, marketing, or public relations) or are intrinsically interested in the subject matter. Most students eventually come to appreciate the value of research to behavioral science, the helping professions, and society, although some continue to regard it as an unnecessary curricular diversion. For some students, being required to take courses in methodology and statistics nudges out other courses in which they are more interested.

In addition, the concepts, principles, analyses, and ways of thinking central to the study of research methods are new to most students and, thus, require a bit of extra effort to comprehend and learn. Not only that, but the topics covered in research methods courses, on the whole, seem inherently less interesting than those covered in most other courses in psychology and related fields. Wouldn't most of us rather be sitting in a class in developmental psychology, neuroscience, social psychology, memory, or human sexuality than one about research methods?

I wrote Introduction to Behavioral Research Methods because, as a teacher and as a researcher, I wanted a text that would help counteract students' natural tendencies to dislike and shy away from research—a text that would make research methodology as understandable, palatable, useful, and interesting for my students as it was for me. Thus, my primary goal was to write a text that is *readable*. Students should be able to understand most of the material in a text such as this without the course instructor having to serve as an interpreter. Enhancing comprehensibility can be achieved in two ways. The less preferred way is simply to dilute the material by omitting complex topics and by presenting material in a simplified, "dumbed-down" fashion. The alternative that I chose is to present the material, no matter how complex, with sufficient elaboration, explanation, and examples to render it understandable. The feedback I've received about the six previous editions gives me the sense that I have succeeded in my goal to create a rigorous yet readable introduction to behavioral research methods.

A second goal was to integrate the various topics to a greater extent than is done in most research methods texts, using the concept of variability as a unifying theme. From the development of a research idea, through measurement issues, to research design and analysis, the entire research process is an attempt to understand variability in behavior. Because the concept of variability is woven throughout the research process, I've used it as a framework to provide coherence to the various topics. Having taught research methods courses centered on the theme of variability for over 30 years, I can attest that students find the unifying theme very useful.

Third, I tried to write a text that is interesting—one that presents ideas in an engaging fashion and uses provocative examples of real and hypothetical research. This edition has even more examples of real research and intriguing controversies in behavioral science than previous editions. Far from being icing on the cake, these features help to enliven the research enterprise. Research methods are essentially tools, and learning about tools is enhanced when students can see the variety of fascinating studies that behavioral researchers have built with them.

Courses in research methods differ widely in the degree to which statistics are incorporated into the course. My own view is that students' understanding of research methodology is enhanced by familiarity with basic statistical principles. Without an elementary grasp of statistical concepts, students find it very difficult to understand the research articles they read. Although this text is decidedly focused on research methodology and design, I've sprinkled essential statistical topics throughout. My goal is to help students understand statistics conceptually without asking them to actually complete the calculations. With a better understanding of basic statistical concepts, students will not only be prepared to read published studies, but they should also be able to design better research studies themselves. Knowing that instructors differ in the degree to which they incorporate statistics into their methods courses, I have made it easy for individual instructors to choose whether students will deal with the calculational aspects of the analyses that appear. For the most part, statistical calculations are confined to a couple of within-chapter boxes, Chapter 12, and the Computational Formulas for ANOVA section in the endmatter. These sections may easily be omitted if the instructor prefers.

Instructors who have used previous editions of the text will find that the statistical material in Chapters 11 and 12 has been rearranged. Behavioral science is in flux regarding the preferred approaches to statistical analysis as the long-standing emphasis on null hypothesis significance testing is being supplemented, if not supplanted, by an emphasis on confidence intervals and effect sizes. In my view, students need to understand all common approaches to analyses that they will encounter in published research, so Chapter 11 provides a conceptual overview of both traditional and "new" approaches to statistical inference, while Chapter 12 dives more deeply into analyses such as *t*-tests and analysis of variance. Other than moving some topics in these chapters, those who are familiar with the previous edition will find the organization of the text mostly unchanged.

As a teacher, researcher, and author, I know that there will always be some discrepancy between professors' and students' attitudes toward research methods, but I believe that the new edition of *Introduction to Behavioral Research Methods* helps to narrow the gap.

New to This Edition

• Replication research is discussed in greater detail, along with the use of registered replication reports.

- The difference between reflective and formative measures is covered to dispel the erroneous belief that all multi-item scales must have high interitem reliability.
- Additional material on the use of telephone surveys and internet-based research has been added in light of the explosion in cell phone usage and Web-based studies.
- Attention is given to shortcomings of traditional null hypothesis significance testing and to alternative approaches to statistical inference involving confidence intervals and effect sizes.
- The two chapters on basic statistical analyses have been reorganized so that conceptual issues in statistical inference appear in Chapter 11 and the details of analyses such as *t*-tests and analysis of variance appear in Chapter 12, providing greater flexibility in how fundamental statistical issues are covered.
- The problems of deductive disclosure and computer security have been added to the discussion of data confidentiality.
- The section on scientific misconduct has been expanded given egregious cases of fraud since the previous edition.
- A new section on "Ethical Issues in Analyzing Data and Reporting Results" has been added that addresses cleaning data, overanalyzing data, selective reporting, and post hoc theorizing.

REVELTM

Educational technology designed for the way today's students read, think, and learn

When students are engaged deeply, they learn more effectively and perform better in their courses. This simple fact inspired the creation of REVEL: an immersive learning experience designed for the way today's students read, think, and learn. Built in collaboration with educators and students nationwide, REVEL is the newest, fully digital way to deliver respected Pearson content.

REVEL enlivens course content with media interactives and assessments — integrated directly within the authors' narrative — that provide opportunities for students to read about and practice course material in tandem. This immersive educational technology boosts student engagement, which leads to better understanding of concepts and improved performance throughout the course.

Learn more about REVEL: www.pearsonhighered. com/revel

Available Instructor Resources

The following resources are available for instructors. These can be downloaded at http://www.pearsonhighered. com/irc. Login required.

- **PowerPoint**—provides a core template of the content covered throughout the text. Can easily be added to customize for your classroom.
- **Instructor's Manual**—includes an outline of the chapter in the text, a list of key terms, ideas for course enhancement (including handouts that can be copied and given to students), and questions for review and application.
- **Test Bank**—includes additional questions beyond the REVEL in multiple choice and open-ended formats.
- **MyTest**—an electronic format of the Test Bank to customize in-class tests or quizzes. Visit: http://www. pearsonhighered.com/mytest.

This page intentionally left blank

About the Author

Mark R. Leary (Ph.D., University of Florida, 1980) is Garonzik Family Professor of Psychology and Neuroscience at Duke University and Director of the Interdisciplinary Behavioral Research Center. Prior to moving to Duke in 2006, Dr. Leary taught at Denison University, the University of Texas at Austin, and Wake Forest University, where he was department chair.

Dr. Leary's research and writing has centered on social motivation and emotion, with an emphasis on people's concerns with interpersonal evaluation and the negative effects of excessive self-focused thought. He has published 12 books and more than 200 scholarly articles and chapters on topics such as self-presentation, self-attention, social emotions (such as social anxiety, embarrassment, and hurt feelings), interpersonal rejection, and self-esteem. His books include: Social Anxiety, Interpersonal Rejection, The Social Psychology of Emotional and Behavioral Problems, Self-Presentation, Introduction to Behavioral Research Methods, Handbook of Self and Identity, Handbook of Hypo-egoic Phenomena, and The Curse of the Self. In addition to serving on the editorial boards of numerous journals, Dr. Leary was founding editor of *Self and Identity*, editor of *Personality and Social Psychology Review*, and President of the Society for Personality and Social Psychology. He is a Fellow of the American Psychological Association, the Association for Psy-

chological Science, and the Society for Personality and Social Psychology. He was the recipient of the 2011 Lifetime Career Award from the International Society for Self and Identity and the recipient of the 2015 Scientific Impact Award from the Society for Experimental Social Psychology. This page intentionally left blank

Chapter 1 Research in the Behavioral Sciences

Learning Objectives

- **1.1** Recall the early history of behavioral research
- **1.2** Summarize the three primary goals of behavioral research
- **1.3** Discuss ways in which the findings of behavioral research do and do not coincide with common sense
- **1.4** Name four benefits of understanding research methods for students
- **1.5** Summarize the three criteria that must be met to consider an investigation scientific
- **1.6** Explain the difference between theories and models
- **1.7** Compare deduction and induction as ways to develop research hypotheses

Stop for a moment and imagine, as vividly as you can, a scientist at work. Let your imagination fill in as many details as possible regarding this scene.

What does the imagined scientist look like? Where is the person working? What is the scientist doing?

When I asked a group of undergraduate students to imagine a scientist and tell me what they imagined, I found their answers to be quite intriguing.

First, virtually every student said that their imagined scientist was male. This in itself is interesting given that a high percentage of scientists are, of course, women.

Second, most of the students reported that they imagined that the scientist was wearing a white lab coat and working in some kind of laboratory. The details regarding this laboratory differed from student to student, but the lab always contained technical scientific equipment of one kind or another. Some students imagined a chemist, surrounded

- **1.8** Contrast conceptual and operational definitions
- **1.9** Explain how scientific progress occurs
- **1.10** Distinguish among the four broad strategies of behavioral research
- **1.11** List specialties that comprise behavioral research
- **1.12** Explain how animal research has contributed to knowledge about thought, behavior, and emotion
- **1.13** List the decisions that researchers must make when they conduct behavioral research

by substances in test tubes and beakers. Other students thought of a biologist peering into a microscope. Still others conjured up a physicist working with sophisticated electronic equipment. One or two students imagined an astronomer peering through a telescope, and a few even imagined a "mad scientist" creating monsters in a shadowy dungeon lit by torches. Most interesting to me was the fact that although these students were members of a psychology class (in fact, most were psychology majors), not one of them thought of any kind of a *behavioral scientist* when I asked them to imagine a scientist.

Their responses were probably typical of what most people would say if asked to imagine a scientist. For most people, the prototypical scientist is a man wearing a white lab coat working in a laboratory filled with technical equipment. Most people do not think of psychologists and other behavioral researchers as scientists in the same way they think of physicists, chemists, and biologists as scientists. Instead, people tend to think of psychologists primarily in their roles as mental health professionals. If I had asked you to imagine a psychologist, you probably would have thought of a counselor talking with a client about his or her problems. You probably would not have imagined a behavioral researcher, such as a developmental psychologist studying how children learn numbers, a physiological psychologist studying startle responses, a social psychologist conducting an experiment on aggression, a political psychologist measuring voters' attitudes, or an organizational psychologist interviewing employees at an automobile assembly plant.

Psychology, however, is not only a profession that promotes human welfare through counseling, psychotherapy, education, and other activities but also a scientific discipline that studies behavior and mental processes. Just as biologists study living organisms and astronomers study the stars, behavioral scientists conduct research involving behavior and mental processes.

1.1: The Beginnings of Behavioral Research

1.1 Recall the early history of behavioral research

People have asked questions about the causes of behavior throughout written history. Aristotle (384–322 BCE) is sometimes credited as being the first individual to systematically address basic questions about the nature of human beings and why they behave as they do, and within Western culture this claim may be true. However, more ancient writings from India, including the *Upanishads* and the teachings of Gautama Buddha (563–483 BCE), offer equally sophisticated psychological insights into human thought, emotion, and behavior.

For over two millennia, however, the approach to answering questions about human behavior was entirely speculative. People would simply concoct explanations of behavior based on everyday observation, creative insight, or religious doctrine. For many centuries, people who wrote about behavior tended to be philosophers or theologians, and their approach was not scientific. Even so, many of these early insights into behavior were, of course, quite accurate.

And yet many of these explanations of behavior were also completely wrong. These early thinkers should not be faulted for having made mistakes, for even modern researchers sometimes draw incorrect conclusions. Unlike behavioral scientists today, however, these early "psychologists" (to use the term loosely) did not rely on scientific research to answer questions about behavior. As a result, they had no way to test the validity of their explanations and, thus, no way to discover whether or not their ideas and interpretations were accurate. Scientific psychology (and behavioral science more broadly) was born during the last quarter of the nineteenth century. Through the influence of early researchers such as Wilhelm Wundt, William James, John Watson, G. Stanley Hall, and others, people began to realize that basic questions about behavior could be addressed using many of the same approaches that were used in more established sciences, such as biology, chemistry, and physics.

Today, more than 100 years later, the work of a few creative scientists has blossomed into a very large enterprise, involving hundreds of thousands of researchers around the world who devote part or all of their working lives to the scientific study of behavior. These include not only research psychologists but also researchers in other disciplines such as education, social work, family studies, communication, management, health and exercise science, public policy, marketing, and a number of medical fields (such as nursing, neurology, psychiatry, and geriatrics). What researchers in all of these areas of behavioral science have in common is that they apply scientific methodologies to the study of behavior, thought, and emotion.

Contributors to Behavioral Research

Wilhelm Wundt and the Founding of Scientific Psychology

Wilhelm Wundt (1832–1920) was the first research psychologist. Most of those before him who were interested in behavior identified themselves primarily as philosophers, theologians, biologists, physicians, or physiologists. Wundt, on the other hand, was the first to view himself as a research psychologist.

Wundt began studying medicine but switched to physiology after working with Johannes Müller, the leading physiologist of the time. Although his early research was in physiology rather than psychology, Wundt soon became interested in applying the methods of physiology to the study of psychology. In 1874, Wundt published a landmark text, *Principles of Physiological Psychology*, in which he boldly stated his plan to "mark out a new domain of science."

In 1875, Wundt established one of the first two psychology laboratories in the world at the University of Leipzig. Although it has been customary to cite 1879 as the year in which his lab was founded, Wundt was actually given laboratory space by the university for his laboratory equipment in 1875 (Watson, 1978). William James established a laboratory at Harvard University at about the same time, thus establishing the first psychological laboratory in the United States (Bringmann, 1979).

Beyond establishing the Leipzig laboratory, Wundt made many other contributions to behavioral science. He founded a scientific journal in 1881 for the publication of research in experimental psychology—the first journal to devote more space to psychology than to philosophy. (At the time, psychology was viewed as an area in the study of philosophy.) He also conducted research on a variety of psychological processes, including sensation, perception, reaction time, attention, emotion, and introspection. Importantly, he also trained many students who went on to make their own contributions to early psychology: G. Stanley Hall (who started the American Psychological Association and is considered the founder of child psychology), Lightner Witmer (who established the first psychological clinic), Edward Titchener (who brought Wundt's ideas to the United States), and Hugo Munsterberg (a pioneer in applied psychology). Also among Wundt's students was James McKeen Cattell, who, in addition to conducting early research on mental tests, was the first college professor to integrate the study of experimental methods into the undergraduate psychology curriculum (Watson, 1978). In part, you have Cattell to thank for the importance that colleges and universities place on courses in research methods.

1.2: Goals of Behavioral Research

1.2 Summarize the three primary goals of behavioral research

Psychology and the other behavioral sciences are thriving as never before. Theoretical and methodological advances have led to important discoveries that have not only enhanced our understanding of behavior but also improved the quality of human life. Each year, behavioral researchers publish the results of tens of thousands of studies, each of which adds incrementally to what we know about the behavior of human beings and other animals.

Some researchers distinguish between two primary types of research that differ with respect to the researcher's primary goal. Basic research is conducted to understand psychological processes without regard for whether or not the knowledge is immediately applicable. The primary goal of basic research is to increase our knowledge. This is not to say that basic researchers aren't interested in the applicability of their findings. They usually are. In fact, the results of basic research are usually quite useful, often in ways that were not anticipated by the researchers themselves. For example, basic research involving brain function has led to the development of drugs that control symptoms of mental illness, and basic research on cognitive development in children has led to educational innovations in schools. However, the immediate goal of basic research is to understand a psychological phenomenon rather than to solve a particular problem.

In contrast, the goal of *applied research* is to find solutions for particular problems rather than to enhance general

knowledge about psychological processes. For example, industrial-organizational psychologists are often hired by businesses to study and solve problems related to employee morale, satisfaction, and productivity. Similarly, community psychologists are sometimes asked to investigate social problems such as racial tension, littering, and violence in a particular city, and researchers in human development and social work study problems such as child abuse and teenage pregnancy. These applied researchers use scientific approaches to understand and solve some problem of immediate concern (such as employee morale, prejudice, or child abuse). Other applied researchers conduct evaluation research (also called program evaluation), using behavioral research methods to assess the effects of social or institutional programs on behavior. When new programs are implementedsuch as when new educational programs are introduced into the schools, new laws are passed, or new employee policies are implemented in a business organization-program evaluators are sometimes asked to determine whether the new program is effective in achieving its intended purpose. If so, the evaluator often tries to figure out precisely why the program works; if not, the evaluator tries to uncover why the program was unsuccessful.

Although the distinction between basic and applied research is sometimes useful, we must keep in mind that the primary difference between them lies in the researcher's purpose in conducting the research and not in the nature of the research itself. In fact, it is often difficult to know whether a particular study should be classified as basic or applied simply from looking at the design of the study.

Furthermore, the basic–applied distinction overlooks the intimate connection between research that is conducted to advance knowledge and research that is conducted to solve problems. Much basic research is immediately applicable, and much applied research provides information that enhances our basic knowledge. Furthermore, because applied research often requires an understanding of what people do and why, basic research provides the foundation on which much applied research rests. In return, applied research often provides important ideas and new questions for basic researchers. In the process of trying to solve particular problems, new questions and insights arise. Thus, although researchers may approach a particular study with one of these goals in mind, behavioral science as a whole benefits from the integration of both basic and applied research.

Whether behavioral researchers are conducting basic or applied research, they generally do so with one of three goals in mind—description, prediction, or explanation. That is, they design their research with the intent of describing behavior, predicting behavior, or explaining behavior. Basic researchers stop once they have adequately described, predicted, or explained the phenomenon of interest; applied researchers typically go one step further to offer suggestions and solutions based on their findings.

1.2.1: Describing Behavior

Some behavioral research focuses primarily on describing patterns of behavior, thought, or emotion. Survey researchers, for example, conduct large studies of randomly selected respondents to determine what people think, feel, and do. You are undoubtedly familiar with public opinion polls, such as those that dominate the news during elections and that describe people's attitudes and preferences for candidates. Some research in clinical psychology and psychiatry investigates the prevalence of certain psychological disorders. Marketing researchers conduct descriptive research to study consumers' preferences and buying practices. Other examples of descriptive studies include research in developmental psychology that describes age-related changes in behavior and studies from industrial psychology that describe the behavior of effective managers.

1.2.2: Predicting Behavior

Many behavioral researchers are interested in predicting people's behavior. For example, personnel psychologists try to predict employees' job performance from employment tests and interviews. Similarly, educational psychologists develop ways to predict academic performance from scores on standardized tests in order to identify students who might have learning difficulties in school. Likewise, some forensic psychologists are interested in understanding variables that predict which criminals are likely to be dangerous if released from prison. Developing ways to predict job performance, school grades, or violent tendencies requires considerable research. The tests to be used (such as employment or achievement tests) must be administered, analyzed, and refined to meet certain statistical criteria. Then data are collected and analyzed to identify the best predictors of the target behavior. Prediction equations are calculated and validated on other samples of participants to verify that they predict the behavior successfully. All along the way, the scientific prediction of behavior involves behavioral research methods.

1.2.3: Explaining Behavior

Most researchers regard explanation as the most important goal of scientific research. Although description and prediction are quite important, scientists usually do not feel that they really understand something until they can explain it. We may be able to describe patterns of violence among prisoners who are released from prison and even identify variables that allow us to predict, within limits, which prisoners are likely to be violent once released. However, until we can *explain* why certain prisoners are violent and others are not, the picture is not complete. As we'll discuss later in this chapter, an important part of any science involves developing and testing theories that explain the phenomena of interest.

WRITING PROMPT

Description, Prediction, and Explanation

We have seen that the goals of behavioral research are to describe, predict, and explain behavior. Consider a psychological phenomenon (such as procrastination, drunk driving, etc.) that seems interesting or important to you. List three questions about this topic that involve (1) describing something about the phenomenon, (2) predicting the phenomenon, and (3) explaining the phenomenon.

The response entered here will appear in the performance dashboard and can be viewed by your instructor.

Submit

1.3: Behavioral Science and Common Sense

1.3 Discuss ways in which the findings of behavioral research do and do not coincide with common sense

Unlike research in the physical and natural sciences, research in the behavioral sciences often deals with topics that are familiar to most people. For example, although few of us would claim to have personal knowledge of subatomic particles, cellular structure, or chloroplasts, we all have a great deal of experience with memory, prejudice, sleep, and emotion. Because they have personal experience with many of the topics of behavioral science, people sometimes maintain that the findings of behavioral science are mostly common sense—things that we all knew already.

In some instances, this is undoubtedly true. It would be a strange science indeed whose findings contradicted everything that laypeople believed about behavior, thought, and emotion. Even so, the fact that a large percentage of the population believes something is no proof of its accuracy. After all, most people once believed that the sun revolved around the Earth, that flies generated spontaneously from decaying meat, and that epilepsy was brought about by demonic possession—all formerly "commonsense" beliefs that were disconfirmed through scientific investigation.

Likewise, behavioral scientists have discredited many widely held beliefs about behavior, including the following:

- Parents should not respond too quickly to a crying infant because doing so will make the baby spoiled and difficult (in reality, greater parental responsive-ness actually leads to less demanding babies).
- Geniuses are more likely to be crazy or strange than people of average intelligence (on the contrary, exceptionally intelligent people tend to be more emotionally and socially adjusted).

- Paying people a great deal of money to do a job increases their motivation to do it (actually, high rewards can undermine intrinsic motivation).
- Most differences between men and women are purely biological (only in the past 50 years have we begun to understand fully the profound effects of socialization on gender-related behavior).

Only through scientific investigation can we test popular beliefs to see which ones are accurate and which ones are myths.

To look at another side of the issue, common sense can interfere with scientific progress. Scientists' own commonsense assumptions about the world can blind them to alternative ways of thinking about the topics they study. Some of the greatest advances in the physical sciences have occurred when people realized that their commonsense notions about the world needed to be abandoned. The Newtonian revolution in physics, for example, was the "result of realizing that commonsense notions about change, forces, motion, and the nature of space needed to be replaced if we were to uncover the real laws of motion" (Rosenberg, 1995, p. 15).

Social and behavioral scientists often rely on commonsense notions regarding behavior, thought, and emotion. When these notions are correct, they guide us in fruitful directions, but when they are wrong, they prevent us from understanding how psychological processes actually operate. Scientists are, after all, just ordinary people who, like everyone else, are subject to biases that are influenced by culture and personal experience. However, scientists have a special obligation to question their commonsense assumptions and to try to minimize the impact of those assumptions on their work.

1.4: The Value of Research to the Student

1.4 Name four benefits of understanding research methods for students

The usefulness of research for understanding behavior and improving the quality of life is rather apparent, but it may be less obvious that a firm grasp of basic research methodology has benefits for a student such as yourself. After all, most students who take courses in research methods have no intention of becoming researchers. Understandably, such students may wonder how studying research benefits them.

A background in research has at least four important benefits:

First, knowledge about research methods allows people to understand research that is relevant to their professions. Many professionals who deal with people—not only

psychologists but also those in social work, nursing, education, management, medicine, public relations, coaching, public policy, advertising, and the ministry-must keep up with advances in their fields. For example, people who become counselors and therapists are obligated to stay abreast of the research literature that deals with therapy and related topics. Similarly, teachers need to stay informed about recent research that might help improve their teaching. In business, many decisions that executives and managers make in the workplace must be based on the outcomes of research studies. However, most of this information is published in professional research journals, and, as you may have learned from experience, journal articles can be nearly incomprehensible unless the reader knows something about research methodology and statistics. Thus, a background in research provides you with knowledge and skills that may be useful in professional life.

Related to this outcome is a second: A knowledge of research methodology makes one a more intelligent and effective "research consumer" in everyday life. Increasingly, we are asked to make everyday decisions on the basis of scientific research findings. When we try to decide which new car to buy, how much we should exercise, which weight-loss program to select, whether to enter our children in public versus private schools, whether to get a flu shot, or whether we should follow the latest fad to improve our happiness or prolong our life, we are often confronted with research findings that argue one way or the other. Similarly, when people serve on juries, they often must consider scientific evidence presented by experts. Unfortunately, studies show that most adults do not understand the scientific process well enough to weigh such evidence intelligently and fairly. Less than half of American adults in a random nationwide survey understood the most basic requirement of a good experimental design, and only a third could explain "what it means to study something scientifically" (National Science Board, 2002). Without such knowledge, people are unprepared to spot shoddy studies, questionable statistics, and unjustified conclusions in the research they read or hear about. People who have a basic knowledge of research design and analyses are in a better position to evaluate the scientific evidence they encounter in everyday life than those without such knowledge.

A third outcome of research training involves the *development of critical thinking*. Scientists are a critical lot, always asking questions, considering alternative explanations, insisting on hard evidence, refining their methods, and critiquing their own and others' conclusions. Many people have found that a critical, scientific approach to solving problems is useful in their everyday lives.

A fourth benefit of learning about and becoming involved in research is that it helps one become an authority not only on research methodology but also on particular topics. In the process of reading about previous studies, wrestling with issues involving research strategy, collecting data, and interpreting the results, researchers grow increasingly familiar with their topics. For this reason, faculty members at many colleges and universities urge their students to become involved in research, such as class projects, independent research projects, or a faculty member's research. This is also one reason why many colleges and universities insist that their faculty maintain ongoing research programs. By remaining active as researchers, professors engage in an ongoing learning process that keeps them at the forefront of their fields.

Many years ago, science fiction writer H. G. Wells predicted that "Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." Although we are not at the point where the ability to think like a scientist and statistician is as important as reading or writing, knowledge of research methods and statistics is becoming increasingly important for successful living.

1.5: The Scientific Approach

1.5 Summarize the three criteria that must be met to consider an investigation scientific

I noted earlier that most people have greater difficulty thinking of psychology and other behavioral sciences as science than regarding chemistry, biology, physics, or astronomy as science. In part, this is because many people misunderstand what science is. Most people appreciate that scientific knowledge is somehow special, but they judge whether a discipline is scientific on the basis of the topics it studies. Research involving molecules, chromosomes, and sunspots seems more scientific to most people than research involving emotions, memories, or social interactions, for example.

Whether an area of study is scientific has little to do with the topics it studies, however. Rather, science is defined in terms of the approaches used to study the topic. Specifically, three criteria must be met for an investigation to be considered scientific: systematic empiricism, public verification, and solvability (Stanovich, 1996).

1.5.1: Systematic Empiricism

Empiricism refers to the practice of relying on observation to draw conclusions about the world.

The story is told about two scientists who saw a flock of sheep standing in a field. Gesturing toward the sheep, one scientist said, "Look, all of those sheep have just been shorn." The other scientist narrowed his eyes in thought, then replied, "Well, on the side facing us anyway." Scientists insist that conclusions be based on what can be objectively observed and not on assumptions, hunches, unfounded beliefs, or the products of people's imaginations. Although most people today would agree that the best way to find out about something is to observe it directly, this was not always the case. Until the late sixteenth century, experts relied more heavily on reason, intuition, and religious doctrine than on observation to answer questions.

But observation alone does not make something a science. After all, everyone draws conclusions about human nature from observing people in everyday life. Scientific observation is *systematic*. Scientists structure their observations in systematic ways so that they can use them to draw valid conclusions about the nature of the world. For example, a behavioral researcher who is interested in the effects of exercise on stress is not likely simply to chat with people who exercise about how much stress they feel. Rather, the researcher would design a carefully controlled study in which people are assigned randomly to different exercise programs and then measure their stress using reliable and valid techniques. Data obtained through systematic empiricism allow researchers to draw much more confident conclusions than they can draw from casual observation alone.

1.5.2: Public Verification

The second criterion for scientific investigation is that the methods and results be available for *public verification*. In other words, research must be conducted in such a way that the findings of one researcher can be observed, verified, and replicated by others.

There are two reasons for this.

First, the requirement of public verification ensures that the phenomena scientists study are real and observable and not one person's fabrications. Scientists disregard claims that cannot be verified by others. For example, a person's claim that he or she was kidnapped by Bigfoot makes interesting reading, but it is not scientific if it cannot be verified.

Second, public verification makes science self-correcting. When research is open to public scrutiny, errors in methodology and interpretation can be discovered and corrected by other researchers. The findings obtained from scientific research are not always correct, but the requirement of public verification increases the likelihood that errors and incorrect conclusions will be detected and corrected.

Public verification requires that researchers report their methods and their findings to the scientific community, usually in the form of journal articles or presentations of papers at professional meetings. In this way, the methods, results, and conclusions of a study can be examined and possibly challenged by others. As long as researchers report their methods in detail, other researchers can attempt to repeat, or replicate, the research. Replication not only catches errors but also allows researchers to build on and extend the work of others.

1.5.3: Solvable Problems

The third criterion for scientific investigation is that science deals only with *solvable problems*. Scientists can investigate only those questions that are answerable given current knowledge and research techniques.

This criterion means that many questions fall outside the realm of scientific investigation. For example, the question "Are there angels?" is not scientific: No one has yet devised a way of studying angels that is empirical, systematic, and publicly verifiable. This does not necessarily imply that angels do not exist or that the question is unimportant. It simply means that this question is beyond the scope of scientific investigation.

In Depth

Science and Pseudoscience

The results of scientific investigations are not always correct, but because researchers abide by the criteria of systematic empiricism, public verification, and solvable problems, scientific findings are the most trustworthy source of knowledge that we have. Unfortunately, not all research findings that appear to be scientific actually are, but people sometimes have trouble telling the difference. The term *pseudoscience* refers to claims of evidence that masquerade as science but in fact violate the basic criteria of scientific investigation that we just discussed (Radner & Radner, 1982).

NONSYSTEMATIC AND NONEMPIRICAL EVIDENCE

As we have seen, scientists rely on systematic observation. Pseudoscientific evidence, however, is often not based on observation, and when it is, the data are not collected in a systematic fashion that allows valid conclusions to be drawn. Instead, the evidence is based on myths, untested beliefs, anecdotes about people's personal experiences, the opinions of selfproclaimed "experts," or the results of poorly designed studies that do not meet minimum scientific standards. For example, von Daniken (1970) used biblical references to "chariots of fire" in Chariots of the Gods? as evidence for ancient spacecrafts. However, because biblical evidence of past events is neither systematic nor verifiable, it cannot be considered scientific. This is not to say that such evidence is necessarily inaccurate; it is simply not permissible in scientific investigation because its veracity cannot be determined conclusively. Similarly, pseudoscientists often rely on people's beliefs rather than on observation or accepted scientific fact to bolster their arguments. Scientists wait for the empirical evidence to come in rather than basing their conclusions on what others think might be the case.

When pseudoscience does rely on observed evidence, it tends to use data that are biased to support its case.

Example

For example, those who believe that people can see the future point to specific episodes in which people seemed to know in advance that something was going to happen. A popular tabloid once invited its readers to send in their predictions of what would happen during the next year. When the 1,500 submissions were opened a year later, one contestant was correct in all five of her predictions. The tabloid called this a "stunning display of psychic ability." Was it? Isn't it just as likely that, out of 1,500 entries, one person would, just by chance, make correct predictions?

Scientific logic requires that the misses be considered evidence along with the hits. Pseudoscientific logic, on the other hand, is satisfied with a single (perhaps random) occurrence. Unlike the extrasensory perception (ESP) survey conducted by the tabloid, scientific studies of ESP test whether people can predict future events at better than chance levels.

NO PUBLIC VERIFICATION

Much pseudoscience is based on individuals' reports of what they have experienced—reports that are essentially unverifiable. If Mr. Smith claims to have been abducted by aliens, how do we know whether he is telling the truth? If Ms. Brown says she "knew" beforehand that her uncle had been hurt in an accident, who's to refute her? Of course, Mr. Smith and Ms. Brown might be telling the truth. On the other hand, they might be playing a prank, mentally disturbed, trying to cash in on the publicity, or sincerely confused. Regardless, because their claims are unverifiable, they cannot be used as scientific evidence.

Furthermore, when pseudoscientific claims appear to be based on research studies, one usually finds that the research was not published in scientific journals. In fact, it is often hard to find a report of the study anywhere, and when a report can be located, on the Web, for example, it has usually not been peer-reviewed by other scientists. You should be very suspicious of the results of any research that has not been submitted to other experts for review.

UNSOLVABLE QUESTIONS AND IRREFUTABLE HYPOTHESES

Pseudoscientific beliefs are often stated in such a way that they can never be tested. Those who believe in ESP, for example, sometimes argue that ESP cannot be tested empirically because the conditions necessary for the occurrence of ESP are compromised under controlled laboratory conditions. Similarly, some advocates of creationism claim that the Earth is much younger than it appears from geological evidence. When the Earth was created in the relatively recent past, they argue, God put fossils and geological formations in the rocks that only make it appear to be millions of years old. In both these examples, the claims are untestable and, thus, pseudoscientific.

1.6: Detecting and Explaining Phenomena

1.6 Explain the difference between theories and models

Scientists are in the business of doing two distinct things (Haig, 2002; Herschel, 1987; Proctor & Capaldi, 2001).

First, they are in the business of discovering and documenting new phenomena, patterns, and relationships. Historically, analyses of the scientific method have neglected this crucial aspect of scientific investigation. Most descriptions of how scientists go about their work have assumed that all research involves testing theoretical explanations of phenomena.

Many philosophers and scientists now question this narrow view of science. In many instances, it is not reasonable for a researcher to propose a hypothesis before conducting a study because no viable theory yet exists and the researcher does not have enough information about the phenomenon to develop one (Kerr, 1998). Being forced to test hypotheses prematurely-before a coherent, viable theory exists-may lead to poorly conceived studies that test half-baked ideas. In the early stages of investigating a particular phenomenon, it may be better to design studies to detect and describe patterns and relationships before testing hypotheses about them. After all, without identifying and describing phenomena that need to be understood, neither theory-building nor future research can proceed in an efficient manner. Typically, research questions evolve from vague and poorly structured ideas to a point at which formal theories may be offered. Conducting research in the "context of discovery" (Herschel, 1987) allows researchers to collect data that describe phenomena, uncover patterns, and identify questions that need to be addressed.

Scientists' second job is to develop and evaluate explanations of the phenomena they see. Once they identify phenomena to be explained and have collected sufficient information about them, they develop theories to explain the patterns they observe and then conduct research to test those theories. When you hear the word theory, you probably think of theories such as Darwin's theory of evolution or Einstein's theory of relativity. However, nothing in the concept of theory requires that it be as grand or all-encompassing as evolution or relativity. Most theories, whether in psychology or in other sciences, are much less ambitious, attempting to explain only a small and circumscribed range of phenomena.

1.6.1: Theories

A *theory* is a set of propositions that attempts to explain the relationships among a set of concepts. For example, Fiedler's (1967) contingency theory of leadership specifies the conditions in which certain kinds of leaders will be more effective in group settings. Some leaders are predominantly task-oriented; they keep the group focused on its purpose, discourage socializing, and demand that the members participate. Other leaders are predominantly relationship-oriented; these leaders are concerned primarily with fostering positive relations among group members and with group satisfaction. The contingency theory proposes three factors that determine whether a task-oriented or relationship-oriented leader will be more effective in a particular situation: the quality of the relationship between the leader and group members, the degree to which the group's task is structured, and the leader's power within the group. In fact, the theory specifies quite precisely the conditions under which certain leaders are more effective than others. The contingency theory of leadership fits our definition of a theory because it attempts to explain the relationships among a set of concepts (the concepts of leadership effectiveness, task versus interpersonal leaders, leader–member relations, task structure, and leader power).

Occasionally, people use the word *theory* in everyday language to refer to hunches or unsubstantiated ideas. For example, in the debate on whether to teach creationism or intelligent design as an alternative to evolution in public schools, creationists dismiss evolution because it's "only a theory." This use of the term *theory* is very misleading. Scientific theories are not wild guesses or unsupported hunches. On the contrary, theories are accepted as valid only to the extent that they are supported by empirical findings. Science insists that theories be consistent with the facts as they are currently known. Theories that are not supported by data are usually discarded or replaced by other theories.

Theory construction is a creative exercise, and ideas for theories can come from almost anywhere. Sometimes, researchers immerse themselves in the research literature and purposefully work toward developing a theory. In other instances, researchers construct theories to explain patterns they observe in data they have collected. Other theories have been developed on the basis of case studies or everyday observation. Sometimes, a scientist does not agree with another researcher's explanation of a phenomenon and sets out to develop a better theory to explain it. At other times, a scientist may get a fully developed theoretical insight when he or she is not even working on research. Researchers are not constrained in terms of where they get their theoretical ideas, and there is no single way to develop a theory.

However, even though ideas for theories can come from anywhere, a good theory must meet several criteria (Fiske, 2004).

What are the characteristics of a good theory in psychology?

Specifically, a good theory in psychology:

- proposes causal relationships, explaining how one or more variables cause or lead to particular cognitive, emotional, behavioral, or physiological responses;
- is coherent in the sense of being clear, straightforward, logical, and consistent;

- generates testable hypotheses that are able to be disconfirmed through research;
- stimulates other researchers to conduct research to test the theory; and
- solves an existing theoretical question.

1.6.2: Models

Closely related to theories are models. In fact, researchers occasionally use the terms *theory* and *model* interchangeably, but we can make a distinction between them. Whereas a theory specifies both how and why concepts are related, a *model* describes only how they are related. We may have a model that describes how variables are related (such as specifying that X leads to Y, which then leads to Z) without having a theory that explains why these effects occur. Put differently, a model tries to *describe* the hypothesized relationships among variables, whereas a theory tries to *explain* those relationships.

For example, the assortative mating model postulates that people tend to select mates who are similar to themselves. This model has received overwhelming support from numerous research studies showing that for nearly every variable that has been examined-such as age, ethnicity, race, emotional stability, agreeableness, conscientiousness, and physical attractiveness-people tend to pair up with others who resemble them (Botwin, Buss, & Shackelford, 1997; Little, Burt, & Perrett, 2006). However, this model does not explain why assortative mating occurs. Various theories have been proposed to explain this effect. For example, one theory suggests that people tend to form relationships with people who live close to them, and we tend to live near those who are similar to us, and another theory proposes that interactions with people who are similar to us are generally more rewarding and less conflicted than those with people who are dissimilar.

1.7: Research Hypotheses

1.7 Compare deduction and induction as ways to develop research hypotheses

On the whole, scientists are a skeptical bunch, and they are not inclined to accept theories and models that have not been supported by empirical research. Thus, a great deal of their time is spent testing theories and models to determine their usefulness in explaining and predicting behavior. Although theoretical ideas may come from anywhere, scientists are very constrained in the procedures they use to test their theories.

People can usually find reasons for almost anything *after* it happens. In fact, we sometimes find it equally easy to explain completely opposite occurrences. Consider Jim

and Marie, a married couple I know. If I hear in 5 years that Jim and Marie are happily married, I'll probably be able to look back and find clear-cut reasons why their relationship worked out so well. If, on the other hand, I learn in 5 years that they're getting divorced, I'll be able to recall indications that all was not well even from the beginning. As the saying goes, hindsight is 20/20. Nearly everything makes sense after it happens.

The ease with which we can retrospectively explain even opposite occurrences leads scientists to be skeptical of *post hoc explanations*—explanations that are made after the fact. In light of this, a theory's ability to explain occurrences in a post hoc fashion provides little evidence of its accuracy or usefulness. If scientists have no preconceptions about what should happen in a study, they can often explain whatever pattern of results they obtain in a post hoc fashion (Kerr, 1998). Of course, if a theory can't explain a particular finding, we can conclude that the theory is weak, but researchers can often explain findings post hoc that they would not have predicted in advance of conducting the study.

More informative is the degree to which a theory can successfully *predict* what will happen. To provide a convincing test of a theory, researchers make specific research hypotheses *a priori*—before collecting the data. By making specific predictions about what will occur in a study, researchers avoid the pitfalls associated with purely post hoc explanations. Theories that accurately predict what will happen in a research study are regarded much more positively than those that can only explain the findings afterward.

The process of testing theories is an indirect one. Theories themselves are not tested directly. The propositions in a theory are usually too broad and complex to be tested directly in a particular study. Rather, when researchers set about to test a theory, they do so indirectly by testing one or more hypotheses that are derived from the theory.

1.7.1: Deduction and Induction

Deriving hypotheses from a theory involves *deduction*, a process of reasoning from a general proposition (the theory) to specific implications of that proposition (the hypotheses). When deriving a hypothesis, the researcher asks, If the theory is true, what would we expect to observe? For example, one hypothesis that can be derived (or deduced) from the contingency model of leadership is that relationship-oriented leaders will be more effective when the group's task is moderately structured rather than unstructured. If we do an experiment to test the validity of this hypothesis, we are testing part, but only part, of the contingency theory of leadership.

You can think of a *hypothesis* as an if-then statement of the general form, "If *a*, then *b*." Based on the theory, the researcher hypothesizes that *if* certain conditions occur, *then*